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Abstract— We have studied the charged particles multiplicity distributions arising from np   and np  collisions over the range of 
laboratory momenta from 50 to 400 GeV/c. The parton two fireball model based on an impact parameter analysis is adopted. Figures and 
calculations are provided to demonstrate good agreement between theoretical calculations and experimental data at different momenta. 

Index Terms— Hadron-Hadron Interaction / Parton Model/ Multiparticle Production. 

——————————      —————————— 

1 INTRODUCTION                                                                     

odels are provided for the hadron structure [1-3]. These 
include the three fireball model [4], quark model [5], 
fragmentation model [6, 7], and many others. The theo-

ries and ideas concerning multiparticle production go back to 
the late of 1930's with a significant interlude at Fermi's statisti-
cal theory of particle production [8]. Multiparticle production 
can be also modeled and described efficiently by studying the 
multiplicity distribution [9]. Several methods exist which in-
vestigate the multiplicity distribution of particles at high ener-
gy [10-13]. Among these are the multiplicity scaling [10,11], 
the statistical boot strap model [12], the two sources model 
[14], the negative binomial distribution [15], fireballs [16], 
strings [17], quark gluon plasma [18,19] and many others.  
       Parton two fireball model have been used in studying 
hadron-hadron, hadron-nucleus and nucleus-nucleus interac-
tions [20, 21].  All these studies showed good predictions of 
the measured parameters [22- 24].  Section 2 presents the pro-
ton neutron and antiproton neutron interactions at high ener-
gies. Section 3 presents the multiparticle production in proton 
neutron and antiproton neutron collisions. Section 4 provides 
the average charged particles multiplicity. Section 5 presents 

qc - moments of the charged particles multiplicity distribu-
tions. Section 6 provides the so-called KNO-Scaling. Section 7 
presents the dispersion of the charged particles multiplicity 
distributions. Section 8 presents the results and conclusion. 

 
2   np 

 INTERACTIONS AT HIGH ENERGIES  
According to the parton two fireball model [20, 21, 25], np   
and np   interaction will be characterized by the impact pa-
rameter and the corresponding overlapping volume. Let us 

assume that the two interacting hadrons at rest are spheres 
each of radius (R). Therefore the two colliding particles can 
interact strongly when the impact parameter is in the region 
from 0 → 2R.  

Therefore, the statistical probability of any impact parame-
ter (b) within an interval (db) is given by, 

                                                                                        
   
                         22
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R

bdb
dbbP                                           (1) 

 
Let us use a dimensionless impact parameter, X, defined as,  
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Then, Eq. (1) can be rewritten as, 
                                   
                                       dX 2X dX P(X)                              (2) 
where, 1X0                                         

Now we employ the overlapping volume, )(bV as a clean 
cut [26] as, 
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In terms of the dimensionless impact parameter (X), the over-
lapping volume )( XV can be given by, 

 
        ) 1.25X+5X 1.-0.75X-(1 V = V(X) 32

     (4)                
       

Then,  the fraction of partons, )( XZ participating in the in-
teraction may be written as, 

M 
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   ) 1.25X+5X 1.-0.75X-(1 =

V

)(
  = Z(X) 32

0

XV
           (5)     

 
According to Eq. (2) and Eq. (5), the Z -function distribution 
can be given by,  
                         

2-1 75X.07.125X+0.75X-(-2.4375X XdX2 =dz P(Z)                                                   
 
                                                 -143 ) 4.687X9.375X-             (6)                                                          
 
where, 1Z0                   
From Eqs. (2, 5) and using least square fitting technique 
(LSFT), Z -function distribution can be written in the follow-
ing form, 

              dzZP k



3

-1k
kC(Z)dz                   (7)                                                                                                                                

 
where, kC  (k = -1, 0, 1, 2, 3) are free parameters to be calculat-
ed to produce a fitting between Eq. (6) and the curve drawn 
from Eq. (7). From such fitting procedure the obtained values 
for kC  are, 
 

 3.228 C -2.65, C 1.21,C 0.089, 2101 C  
 
and -1.823 C 3   
 
3   MULTIPARTICLE PRODUCTION IN PROTON-NEUTRON 
AND ANTIPROTON- NEUTRON COLLISIONS 
After the collision takes place, the partons within the overlap-
ping volume stop in the center of mass system (CMS); their 
kinetic energy (K.E) will be changed into excitation energy to 
produce two intermediate states (fireballs). The produced fire-
balls will radiate the excitation energy into a number of newly 
created particles, which are mostly pions. We assume that 
each fireball will decay in its own rest frame into a number of 
pions with an isotropic angular distribution. The number of 
created pions will be defined by the fireball rest mass ( fM ) 
and the mean energy consumed in the creation of each pion 
( ). 

The energy available for the creation of pions from each 
fireball will be,  
                               )( XZTmM f                        (8)   
 
where, T  is the kinetic energy of the incident proton in CMS  
 
and given by, 

2

Q
T    , Q is the total available kinetic en-

ergy in CMS. 
The number of created pions ( n ) from each fireball will 

be given by, 
       

 2

)()(
)( 0 QXZTXZ

Zn                   (9)                            
 
It is clear that Eq. (9) gives the total number of created par-

ticles (charged and neutral) as a function of the dimensionless 
impact parameter. 

To get the charged particles multiplicity distribution, we 
have to assume some distribution for the charged particles 
( chn ) in the final state of the interaction at any impact param-
eter out from the total created particles ( n ). We considered 
the new created particles from each fireball can be divided 

into a number of pairs. Each pair will be either charged or 
neutral to satisfy the charge conservation. 

From equations (7) and (9), the total number of created par-
ticles distribution, )( nP  can be calculated from the follow-
ing equation,  
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We assume a binomial and Poisson distributions for the prob-
ability distribution for the creation of charged pion pairs from 
one fireball of the forms, 

1) Binomial distribution of the form, 
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2) Poisson distribution of the form, 
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where, N is the number of pairs of created particles from one 
fireball ( 2/0nN  ), 2n  the number of pairs of charged pi-
ons, p the probability that the pair of pions is charged, q the 
probability that the pair of pions is neutral. 
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Therefore, the charged particles distribution from one fireball 
will be given by, 

                   
0
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Then, the charged particles multiplicity distribution from the 
two fireballs will be,  
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                                                 ; /.,,.........6,4,2 Qnch   
We assume that   increases with the multiplicity size, ( 0N ) 
as, bNa   where, a and b are free parameters which 

can be taken to be,  a = 0.02, b= 0.27.  
        Charged particles multiplicity distributions have been 
calculated at 80,50LP GeV/c for np  , 200,100LP  
400,  GeV/c for np   which are represented in fig. (1) a), 

b), c), d) and e) along with the corresponding experimental 
data [27-31].            
        We have also modified our calculations by changing Z  
and dZ  as follows, 
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By substituting in Eq.(7),  we will get the following equation, 
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Therefore, the charged particles distribution from one fireball 
will be given by, 
                  
                       )(  P )(  = (n) 
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nn            (16) 
  
Then, the charged particles multiplicity distribution from the 
two fireballs will be, 
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We again assume that   increases with the multiplicity size, 

( 0n ) as, bna    where, a = 0.01, b = 0.35 for np   

and a = 0.01, b = 0.44 for np  . 

        Our new calculations have been calculated using different 
free parameters, a = 0.01, b = 0.35 for np   and a = 0.01, b = 
0.44 for np   interactions and are represented in fig. (2) a), 
b), c) ,d) and e) along with the corresponding experimental 
data [27-31]. 

 
4    THE AVERAGE CHARGED PARTICLES MULTIPLICITY 
 From the charged particles multiplicity distributions, it is pos-
sible to calculate the average charged particles multiplicity by 
using the relation, 
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Thus, the multiplicity distributions of charged particles de-
scribed above (Eqs.14, 17) are used to calculate the average 
charged particles multiplicity at different incident momenta. 
These calculations are represented in fig. (3) along with the 

 

 

 

Fig. 1. Normalized multiplicity distribution of charged parti-

cles chn for np  and np  collisions calculated ac-

cording to the parton two fireball model as parameterized by 

Poisson and binomial distribution using Eq.(14) in comparison 

with the corresponding experimental data at a) 50,  b) 80, c) 100, 

d) 200 and e) 400 GeV/c. 
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available experimental data [27-31] which shows good agree-
ment with the experimental values. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5    qc -MOMENTS OF THE CHARGED MULTIPLICITY     
        DISTRIBUTION 
The normalized moments qc are defined by the relation, 
 
                    

qq
qc  chch n /n              (19)                

 

 

Fig. 3. Variation of average number of 
charged particles  chn   for np    and 

np  versus the incident momentum pre-
dicted by the parton two fireball model using 
a) Eq.14, b) Eq.17. 

 

 

 

 

 

Fig. 2. Normalized multiplicity distribution of charged parti-

cles chn for np   and np  collisions calculated 

according to the parton two fireball model as parameterized by 

Poisson and binomial distribution using Eq.(17) in comparison  

with the corresponding experimentaldata at  a) 50,  b) 80, c) 

100, d) 200 and e) 400 GeV/c. 
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where q = 2, 3,……..,10.    
      Using the above relation, qc -moments are calculated and 
represented in fig. (4) along with the available experimental 
data [32-38] which shows good fitting with the experimental 
data.   
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6      KNO-SCALING  
An interesting feature of the topological cross section is the 
idea of KNO- scaling [12] suggested by Koba, Nielson and 
Olesson. .  According to KNO - Scaling, if we plot the relation 
between multiplicity distributions of charged particles based 
on the above scheme multiplied by the average charged parti-
cles multiplicity )( chch nPn  and the number of charged 
particles divided by the same quantity  chch nn /  at 
different momenta, then, the relation must be energy inde-
pendent. These calculations are represented in fig. 5. The ob-
tained results show good agreement with the corresponding 
experimental data [27-31]. 

7 DISPERSION OF THE CHARGED MULTIPLICITY 

DISTRIBUTIONS 
The dispersion of the multiplicity distribution is defined as, 

       2/122  chch nnD             (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and the dispersion parameter is Dn ch / which is 
found experimentally to be approximately constant with the 
increase in the incident momenta.   
        We have calculated the charged multiplicity moments, 

 2
chn , 2 chn and hence the dispersion parameter 

Dnch / , the results obtained at different momenta are 
given in fig. (6) together with the available data [27-31]. It can 
be seen from the figure that the predictions are in an excellent 
agreement with observations.  
 
 
8    RESULTS AND CONCLUSION 
 The charged particles multiplicity distributions, Eq. (14), are 
calculated for np   and np   assuming ε is given by, 

bNa   where, a = 0.02, b= 0.27. The results of these 
calculations are represented in fig. (1) a), b), c), d) and e) along 
with the experimental data [27-31]which show good agree-
ment with the corresponding experimental data. It can be seen 
from fig. (1) that the emission of secondary particles is as-
sumed to follow a binomial distribution.  

 

Fig. 4. The dependence of qc moments for 
np   collisions at 100-400 GeV/c  as a function 

of the incident momenta using a) Eq.14, b) Eq.17. 

 

 

Fig. 5. Multiplicity distribution of charged particles chn for 
np  collisions at energies ranges 100-400 GeV/c using the 

parton two fireball model in the form of KNO-Scaling in compari-

son with the corresponding experimental data using a) Eq.14, b) 

Eq.17. 
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        We have also modified our calculations by changing Z  
formula and these calculations are representedin fig. (2) a), b), 
c), d) and e) along with the same experimental data [27-31]. 
We have also found some slight variations in comparison with 
fig.(1). Fig. (3) shows the variation of the average charged par-
ticles multiplicity  chn   with various laboratory momenta 
(50, 80, 100, 200 and 400 GeV/c), from fig. (3) it can be seen 
that the dependence of  chn  on laboratory momenta is in 
accordance with the experimental data [27-30]. Fig. (4) shows 
the dependence of qc moments for np  collisions at 100-
400 GeV/c on incident momenta and shows also a good fitting 
between our calculations and the corresponding experimental 
data [32-38]. Fig.(5) views  the multiplicity distribution of 
charged particles chn for np   collisions at momenta 
ranges 100 - 400 GeV/c using the parton two fireball model in 
the form of  KNO-Scaling in comparison with the correspond-
ing experimental data[27-31] and that scaling is clearly energy 
independent. Figs. (6, 7) show the dependence of dispersion 
on incident momenta and the correlation between dispersion 
and the average multiplicity and the experimental data [27-31] 
are consistent with our predictions.  
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